Order Code NSE Neuron-Specific Enolase (NSE), Spinal Fluid
Additional Codes
Mayo Test ID |
---|
NSESF |
Reporting Name
Neuron Specific Enolase, CSFUseful For
An auxiliary test in the diagnosis of Creutzfeldt-Jakob disease
An auxiliary test in the diagnosis of small cell lung carcinoma metastasis to central nervous system or leptomeninges
Specimen Type
CSFSpecimen Required
Container/Tube: Sterile vial
Specimen Volume: 0.5 mL
Specimen Minimum Volume
0.3 mL
Specimen Stability Information
Specimen Type | Temperature | Time |
---|---|---|
CSF | Refrigerated (preferred) | 15 days |
Ambient | 72 hours |
Reject Due To
Gross hemolysis | Reject |
Gross lipemia | OK |
Gross icterus | Reject |
Reference Values
Normal: ≤15 ng/mL
Indeterminate: 15-30 ng/mL
Elevated: >30 ng/mL
Elevated results may indicate the need for additional workup. Possible causes may be neuron-specific enolase-secreting central nervous system/leptomeningeal tumor or rapid neuronal destruction from a variety of causes. In the context of dementia, elevated results may be suggestive of Creutzfeldt-Jakob disease.
Performing Laboratory

Day(s) Performed
Monday through Saturday
Method Name
Homogeneous Time-Resolved Fluorescence
CPT Code Information
83520
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
NSESF | Neuron Specific Enolase, CSF | 44802-7 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
NSESF | Neuron Specific Enolase, CSF | 44802-7 |
Method Description
Neuron specific enolase (NSE) is measured in this homogeneous automated immunofluorescent assay on the BRAHMS Kryptor. The Kryptor uses TRACE (time resolved amplified cryptate emission) technology based on a non-radioactive transfer of energy. This transfer occurs between 2 fluorescent tracers: the donor (europium cryptate) and the acceptor (XL665). In the NSE assay, 2 monoclonal antibodies are labeled, 1 with europium cryptate and 1 with XL665. NSE is sandwiched between the 2 antibodies, bringing them into close proximity. When the antigen-antibody complex is excited with a nitrogen laser at 337 nm, some fluorescent energy is emitted at 620 nm and the rest is transferred to XL665. This energy is then emitted as fluorescence at 665 nm. A ratio of the energy emitted at 665 nm to that emitted at 620 nm (internal reference) is calculated for each sample. Signal intensity is proportional to the number of antigen-antibody complexes formed, and therefore to antigen concentration.(Unpublished Mayo method)