Sign in →

Order Code NSES Neuron-Specific Enolase, Serum

Additional Codes

Mayo Test ID
NSE

Reporting Name

Neuron Specific Enolase, S

Useful For

A follow-up marker in patients with neuron-specific enolase-secreting tumors of any type

 

An auxiliary test in the diagnosis of small cell lung carcinoma

 

An auxiliary test in the diagnosis of carcinoids, islet cell tumors, and neuroblastomas

 

An auxiliary tool in the assessment of comatose patients

Specimen Type

Serum


Specimen Required


Collection Container/Tube:

Preferred: Red top

Acceptable: Serum gel

Submission Container/Tube: Plastic vial

Specimen Volume: 0.5 mL

Collection Instructions:

1. Specimens should not be transported by tube system prior to centrifugation.

2. Centrifuge and aliquot serum into a plastic vial.


Specimen Minimum Volume

0.3 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Serum Refrigerated (preferred) 7 days
  Ambient  5 days

Reject Due To

Gross hemolysis Reject
Gross lipemia OK
Gross icterus Reject
Hemolysis at any level Reject

Reference Values

≤15 ng/mL

Serum markers are not specific for malignancy, and values may vary by method.

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Day(s) Performed

Monday through Saturday

Method Name

Homogeneous Time-Resolved Fluorescence

CPT Code Information

83520

Method Description

Neuron-specific enolase is measured in this homogeneous automated immunofluorescent assay on the BRAHMS Kryptor. The Kryptor uses TRACE (time resolved amplified cryptate emission) technology based on a nonradioactive transfer of energy. This transfer occurs between 2 fluorescent tracers: the donor (europium cryptate) and the acceptor (XL665). In the NSE assay, 2 monoclonal antibodies are labeled, 1 with europium cryptate and 1 with XL665. NSE is sandwiched between the 2 antibodies, bringing them into close proximity. When the antigen-antibody complex is excited with a nitrogen laser at 337 nm, some fluorescent energy is emitted at 620 nm, and the rest is transferred to XL665. This energy is then emitted as fluorescence at 665 nm. A ratio of the energy emitted at 665 nm to that emitted at 620 nm (internal reference) is calculated for each sample. Signal intensity is proportional to the number of antigen-antibody complexes formed and, therefore, to antigen concentration.(Unpublished Mayo method)

Forms

If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.