Sign in →

Order Code PIPA Pipecolic Acid, Serum

Reporting Name

Pipecolic Acid, S

Useful For

Differentiating between disorders of peroxisomal biogenesis (eg, Zellweger syndrome) and disorders with loss of a single peroxisomal function

 

Detecting abnormal elevations of pipecolic acid in serum

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Specimen Type

Serum


Necessary Information


Patient's age is required.



Specimen Required


Patient Preparation: Fasting 12 hours or more. (Collect specimens from infants and small children just before next feeding)

Supplies: Sarstedt Aliquot Tube, 5 mL (T914)

Collection Container/Tube:

Preferred: Serum gel

Acceptable: Red top

Submission Container/Tube: Plastic vial

Specimen Volume: 1.5 mL

Collection Instructions: Centrifuge and aliquot serum into plastic vial.


Specimen Minimum Volume

1 mL

Specimen Stability Information

Specimen Type Temperature Time
Serum Frozen (preferred) 94 days
  Refrigerated  14 days

Reference Values

<6 months: ≤6.0 nmol/mL

6 months-<1 year: ≤5.9 nmol/mL

1-17 years: ≤4.3 nmol/mL

≥18 years: ≤7.4 nmol/mL

Day(s) Performed

Tuesday

CPT Code Information

82542

Genetics Test Information

In the newborn period, pipecolic acid levels are more likely to be abnormal in urine than in plasma or serum. Abnormal levels of pipecolic acid should be interpreted together with the results of other biochemical markers of peroxisomal disorders, such as plasma C22-C26 very long-chain fatty acids, phytanic acid, pristanic acid, red blood cell plasmalogens, and bile acid intermediates.

Method Description

Pipecolic acid is quantitated by a stable isotope dilution method; electron capture negative chemical ionization gas chromatography mass spectrophotometry of pentafluorobenzyl esters.(Kok RM, Kaster L, de Jong AP, et al. Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine and amniotic fluid using electron capture negative ion mass fragmentography. Clin Chim Acta. 1987;168:143-152, Kuhara t, Akiyama T, Ohse M, et al. Identification of new biomarkers of pyridoxine-dependent epilepsy by GC/MS-based urine metabolomics. Anal Biochem. 2020;604:113739. doi:10.1016/j.ab.2020.113739)

Reject Due To

Gross hemolysis OK
Gross lipemia OK
Gross icterus OK

Method Name

Gas Chromatography Mass Spectrometry (GC-MS)

Testing Algorithm

For more information see Epilepsy: Unexplained Refractory and/or Familial Testing Algorithm